No. of Printed Pages: 7

BCS-054

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination

December, 2019

BCS-054 : COMPUTER ORIENTED NUMERICAL
TECHNIQUES

Time: 3 Hours

Maximum Marks: 100

Note: Question No. 1 is compulsory. Attempt any three more questions from the questions no. 2 to 5. Use of any calculator is permitted.

- 1. (a) Find the absolute error and relative error in the numbers 432.8 and 0.12584 if four digit mantissa is used and chopping is used for approximation.
 - (b) Round the following numbers to two decimal places: 2
 38.21416, 4.3742, 82.375, 2.4869

cesaga

(c) For the following two floating point numbers:

$$x_1 = 0.5527 \times 10^4$$

and
$$x_2 = 0.6243 \times 10^3$$

find $x_1 - x_2$. The result should be rounded to four decimal digits.

- (d) Find the product of x₁ and x₂ given in
 Q. No. 1 (c) above. The result should be chopped to four decimal digits.
- (e) Find the Newton's forward difference interpolating polynomial for the following data. Hence obtain the value of f (x) at x = 1.5:

x	f(x)
1	34
2	60
3	. 90
4	124
5	162
6	204

(f) Write the following system of linear equations in matrix form:

$$x + 2y + 3z = 14$$
$$x - y = -1$$
$$y + 3z = 11$$

(g) Solve the following system of linear equations using Gauss-Seidel iterative method:

$$x + 6y = 13$$
$$4x - y = 2$$

Perform two iterations, taking x = 0 and y = 0 as the initial values.

(h) Find an interval in which the following equation has a positive root:

$$2x^3 + x^2 - 20x + 12 = 0$$

- (i) Find Δf for the following functions for some h > 0:
 - $(i) \quad f(x) = 3x^2$
 - (ii) f(x) = 2x
- (j) Find the approximate value of $I = \int_0^1 \frac{dx}{1+x^2}$ using Trapezoidal rule dividing the interval into five equal parts.

10

- 2. (a) Using an 8-decimal digit floating point representation (4 digits for mantissa, 2 for exponent and 1 each for sign for exponent and sign for mantissa) represent the following numbers in normalised floating point from (using chopping if required): 6
 - (i) 92752
 - (ii) -93.231
 - (iii) -0.0012345
 - (b) Solve the following system of linear equations by using Gaussian elimination method:

$$x_1 - x_2 - x_3 = -3$$

$$2x_1 + 3x_2 + 5x_3 = 7$$

$$x_1 - 2x_3 + 3x_3 = -11$$

- (c) Give one example each of the following: 6
 - (i) Ill conditional problem
 - (ii) Ordinary differential equation (ODE) of degree 3 and order 2
 - (iii) A system of inconsistent linear equations in two variables.

8. (a) Consider the initial-value problem:

$$y' = 0.2xy, y(1) = 1$$

Euler's method to obtain approximation to y(1.2) using h = 0.1.

(b) Using Lagrange's interpolation formula, find the form of the function y(x) from the following table. Also compute f(3):

x	y
0	6
2	20
5	56

Write the expressions, one for each, which is obtained by applying each of the following operators to f(x) for some h > 0:

- (i) V
- (ii) δ
- (iv) E
- (d) Derive the relation between δ and E.

4. (a) Solve the following system of linear equations using partial pivoting:

$$x + y - 5z = 0$$
$$5x + 2y - z = 18$$
$$2x - 2y + z = 3$$

(b) Find a real root for the equation $x^3 + x - 5 = 0$

Using Regula-Falsi method, taking x coordinates of initial points as x = 0 and x = 2. Perform only two iterations of the method.

(c) Make the Newton's divided difference table for the following data:

	J
x	- f(x)
albumine of the community	10
and in 2. A process	20
0 = 4 - 100 miles	40
8	80

5. (a) Explain the concept of overflow and underflow in the context of decimal floating point number with the help of one example of each.

- (b) Find by Newton-Raphson's method, the real root of the equation x² 3x + 1 = 0 taking x = 2 as the starting value. Show three iterations.
- (c) Apply Newton's backward difference formula to the data below to obtain a polynomial of degree 4 in x:

x	У
1	1
2	-1
3	. 1
4	-1
5	1