Number of Printed Pages: 4

MCS-031

MCA (Revised)

Term-End Examination, 2019

MCS-031: DESIGN AND ANALYSIS OF ALGORITHMS

Time: 3 Hours [Maximum Marks: 100

Note: Question No. 1 is **compulsory**. Attempt **any three** from the remaining questions.

- 1. (a) Illustrate the heap sort algorithm on the sequence < 151, 98, 138, 76, 99, 200, 16 > [5]
 - (b) Give an analysis of Merge-sort. For simplicity assume that the number of elements i.e. n is an exact power of two. [5]
 - (c) Solve the recurrence equation: [5]

$$T(n) = \begin{cases} 2T\left(\frac{n}{2}\right) + 0(n^2) &, n > 1\\ 1 &, n \le 1 \end{cases}$$

(d) List and explain any five properties of regular expressions. [5]

MCS-031/7000

(e) Using Dijkstra's algorithm, find the minimum distance of all the nodes from node b which is taken as the source node, for the following graph:

- (f) Using Dynamic programming technique, find out minimum number of coins required to collect Rs. 8 out of the coins of denominations 1, 4, 6.
- (g) Explain Halting problem of Turing Machine with an example. [5]
- (a) Multiply 10752×5318 using Karatsuba's method.
 Analyse the running time of the algorithm used.
 [10]
 - (b) Define Turing Machine. Design a Turing Machine which accept the Language $L = \{a^n b^n \mid n \ge 1\}$. [10]

- 3. (a) Explain the following problems together with their respective significance : [5+5=10]
 - (i) Undecidable problem
 - (ii) NP-Hard problem
 - (b) What is MinMax Algorithm? Explain how Alpha-Beta pruning helps in improving MinMax Algorithm. [10]
- 4. (a) Explain the Kruskal-algorithm for Minimum Spanning Tree (MST) construction. [5]
 - (b) Show the MST corresponding to the following adjacency matrix representation of a graph: [5]

	а	b	С	d	e	
а	·	1	15	-	5	
b	1	•	2	-	10	
С	15	2	-	8	6	
d	· -	-	. 8	-	3	
е	5	10	6	3	-	

(c) Differentiate between NP-Complete and NP-Hard problem. Show that CLIQUE problem is NP-Complete. [10]

- (a) Explain the Meaning and the language describe by each of the following regular expression: [6]
 - (i) $(a+b)^*$
 - (ii) $ab^*a^*(a+b)$
 - (iii) $ab(a+b)^*$

Where '*' is a Kleen closure.

(b) Show that :

[8]

- (i) $2^n = 0(5^n)$
- (ii) $n = 0(n^n)$
- (c) Explain limitations of Strassen's algorithm for matrix multiplications. [6]

---- x -----