No. of Printed Pages: 4

BCS-012

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

Term-End Examination, 2019

BCS-012: BASIC MATHEMATICS

Time: 3 Hours [Maximum Marks: 100

Note: Question no.1 is compulsory. Attempt any three questions from remaining four questions.

1. (a) Show that:
$$\begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix} = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$$
 [5]

- Using determinants, find the area of the triangle whose vertices are (2,1), (3, -2) and (-4,-3). [5]
- (c) Use mathematical induction to show that $1+3+5+...+(2n-1) = n^2 \forall n \in \mathbb{N}$ [5]
- (d) If α , β are roots of $x^2 3ax + a^2 = 0$, find a if $\alpha^2 + \beta^2 = \frac{1}{7}.$ [5]

(e) If 1,
$$w$$
, w^2 are cube roots of unity, find the value of: $(2+w)(2+w^2)(2+w^{22})(2+w^{26})$ [5]

(f) If 9th term of an A.P. is 25 and 17th term of the A.P. is 41, find its 20th term. [5]

(g) If
$$y = 3xe^{-x}$$
, find $\frac{d^2y}{dx^2}$ [5]

(h) Evaluate
$$\int x\sqrt{2x+3} \ dx$$
. [5]

2. (a) If
$$A = \begin{bmatrix} 0 & 3 & -1 \\ 2 & 1 & 3 \\ -1 & 0 & 0 \end{bmatrix}$$
, show that $A(adjA) = |A|I_3$. [5]

(b) If
$$A = \begin{pmatrix} 3 & -1 & 0 \\ 2 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
, show that A is equivalent to I_3 .

[5]

(c) If
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$$
, show that $A^2 - 4A + I = O$, where I and O are identity and null matrix respectively of order 2. Also, find A^5 . [5]

BCS-012/15000

- (d) Use principle of mathematical induction to show that 2³n-1 is divisible by 7. [5]
- Find all solutions of : $z^2 = z$ [5] (z is conjugate of z)
 - (b) Solve the equation : [5] $x^3 13x^2 + 15x + 189 = 0 \text{ if one root of the equation exceeds other by 2.}$
 - (c) Solve the inequality: $\left|\frac{2x-3}{4}\right| \le \frac{2}{3}$
 - (d) If $y = ln \left[e^x \left(\frac{x-1}{x+1} \right)^{\frac{3}{2}} \right]$, find $\frac{dy}{dx}$. [5]
- 4. (a) If a>0, find local maximum and local minimum values of $f(x) = x^3 2ax^2 + a^2x$. [5]

(b) Evaluate
$$\int \frac{dx}{3+e^x}$$
. [5]

(c) Evaluate
$$\int_{-1}^{2} \frac{x}{(x^2+1)^2} dx$$
 [5]

BCS-012/15000

(3)

[P.T.O.]

- (d) Find the area bounded by the x-axis, y=3+4x and the ordinates x=1 and x=2, by using integration. [5]
- 5. (a) If the mid-points of the consecutive sides of a quadrilateral are joined, then show that the quadrilateral formed is a parallelogram. [5]

(b) If
$$\vec{a} = \hat{i} + 2\hat{j} - \hat{k}, \vec{b} = \hat{j} + \hat{k}, \vec{c} = 3\hat{i} - \hat{j} + k$$
, find $(\vec{a} \times \vec{b}) \times \vec{c}$. [5]

(c) Find equation of line passing through (-1,-2,3) and perpendicular to the lines:

$$\frac{x}{1} = \frac{y}{3} = \frac{z}{2}$$
 and $\frac{x+2}{-3} = \frac{y-1}{5} = \frac{z+1}{2}$ [5]

(d) Maximize: [5]

$$Z = 2x + 3y$$

Subject to:

$$x + y \ge 1$$

$$2x + y \le 4$$

$$x+2$$
 $y \le 4$,

$$x \ge 0$$
, $y \ge 0$

---- X -----